Blouter.ru

Авто Журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Газотурбинный двигатель принцип работы

Газотурбинный двигатель принцип работы

Газотурбинный двигатель: принцип работы и конструкция

Газотурбинный двигатель – это то, что в последнее время используется как энергетическая установка для машины.

И это связано не только с несомненными преимуществами данного агрегата.

Газотурбинный двигатель способен развить мощность, которая просто необходима некоторым автомобилям.

Конструкция

Благодаря тому, что у этого агрегата отсутствуют возвратно-поступательно двигающиеся части, а также тому, что его ротор обладает высокой частотой вращений, можно существенно уменьшить габаритные размеры и удельную массу этого двигателя (если сравнивать с дизелем). А это, в свою очередь, позволяет рассмотреть его как перспективный агрегат. Итак, чтобы создать газотурбинный двигатель своими руками (данным процессом интересуются многие – это реально, однако весьма трудно), нужно иметь турбины, камеру сгорания и компрессор. Также в его комплектацию входят стартер, масляный насос, регулятор частоты вращений и другое оборудование. Как правило, в автомобильных двигателях газотурбинного типа применяется центробежный одноступенчатый компрессор, при помощи которого давление воздуха увеличивается в 3,5 раза. Чтобы достичь указанного давления, нужно, чтобы компрессорное колесо вращалось с как можно большей скоростью. А она составляет около 420-450 метров в секунду.

Материалы

Для изготовления камеры сгорания чаще всего используется листовой жаростойкий материал. Газотурбинный двигатель в своей комплектации имеет осевую и центростремительную турбины. Они же состоят из рабочего колеса и соплового аппарата. Газ в осевой турбине, проходя по каналам, которые находятся в рабочем колесе, изменяет направление своего движения. При этом оказывается давление на лопатки. Благодаря этому образуется сила, которая приводит во вращение рабочее колесо.

Газотурбинный двигатель: принцип работы устройства

Компрессорный вал при помощи стартера приводится в движение. Пусковая частота вращения составляет 2530% от номинальной. Сжатый воздух подается компрессором в камеру сгорания, а в неё через форсунку нагнетается топливо с помощью шестеренчатого насоса. После этого посредством электрической свечи накаливания поджигается горючее. И как только устойчивая зона горения образована, последующее горючее воспламеняется от соприкосновения с огнем, а отработанные газы затем уходят в атмосферу через выпускную трубу.

Отличительные свойства

Хочется отметить, что газотурбинный двигатель обладает еще и высочайшими пусковыми качествами. Несмотря на то, что его стартер имеет достаточно небольшую производительность, он может обеспечить пуск при абсолютно любой температуре внешней среды. Это очень хорошее качество.

И еще одно его существенное преимущество – достаточно малая токсичность газов, которые отрабатываются двигателем: она в 37 раз меньше тех, которые извергает дизель. Из этого можно сделать вывод, что такой двигатель еще и безопасен для окружающей среды.

Принцип работы газотурбинного двигателя

Газотурбинный двигатель (ГТД) представляет собой разновидность теплового двигателя, в конструкции которого имеются лопаточные машины. Особенностью работы является то, что превращение энергии горящего топлива в механическую работу происходит в нем непрерывно.

В ГТД составные части рабочего цикла, включающего сжатие воздуха, отвод теплоты к рабочему телу и расширение, разобщены между собой и протекают в разных местах.

Газотурбинный двигатель может быть использован в качестве теплового двигателя на газотурбовозах и самолетах.

Газотурбинный двигатель может работать на любом виде и сорте топлива (жидкое, твердое и газообразное).

На сегодняшний день известно много конструкций и схем ГТД, отличающихся друг от друга следующими параметрами:

• условиями сжигания топлива — с внутренним и внешним сжиганием;

• использованием рабочего тела в круговом процессе — разомкнутые и замкнутые системы;

• количеством валов — одновальные, двух- и многовальные.

Рис. 2. Принципиальная схема одновального газотурбинного двигателя:

1 — корпус газовой турбины; 2 — рабочее колесо газовой турбины; 3 — топливный насос; 4 — свободный вал; 5— воздушный компрессор; 6 — воздухозаборное устройство воздушного компрессора; 7— электрическая свеча зажигания; 8— камера сгорания; 9 — направляющий аппарат; 10 — газоотвод; II — потребитель мощности; 12 — пусковой двигатель

В установках СПГГ обычно используется низкосортное топливо. Турбина работает на газе с относительно невысокой температурой (500. 600 °С), поэтому для изготовления лопаток может быть использован менее жаропрочный материал. КПД таких установок достигает 35 %, однако они имеют увеличенную массу и габариты по сравнению с дизелями с газотурбинным наддувом.

Экономичность работы ГГД можно улучшить за счет повышения температуры газов перед турбиной, использования многовальных систем, применения регенерации и утилизации теплоты уходящих газов (например, для отопления и кондиционирования воздуха в вагонах), применения промежуточного охлаждения воздуха при сжатии и промежуточного подвода теплоты к газу при его расширении. Обеспечение этих мероприятий требует применения жаропрочных сталей для лопаток турбины, использования металлокерамических материалов, воздушного охлаждения части турбины. При этом КГТД действующих установок повышается до 33. 40 %.

Существуют проектные разработки и попытки создания локомотивных газотурбинных двигателей на твердом или пылевидном топливе.

Газотурбинная установка компактна, обладает малой массой на единицу мощности, не содержит деталей с возвратно-поступательным движением, которое приводит к более быстрому износу двигателя, отличается малыми затратами на содержание оборудования. Она может работать без потребления воды, в ней легко полная автоматизация процессов, имеется реальная возможность для сжигания в камере сгорания различных видов топлива, а также имеет относительно постоянный вращающий момент на валу отбора мощности.

Особенность ГТД, применяемых в авиации, является то, что энергия сгорания топлива преобразуется в энергию истечения газов, которые с большой скоростью через выпускную систему ГТД выбрасываются в атмосферу. Тяга при работе этих двигателей возникает за счет разности количеств движения (произведения массы на скорость), выходящего из выпускной системы газовоздушного потока и входящего в приемное устройство ГТД воздуха. Тяга направлена при этом в сторону, противоположную направлению истечения газов, т. е. является реактивной. Нетрудно представить себе, что для увеличения тяги реактивного двигателя необходимо увеличить разность количеств движения, т. е. на выходе из ГТД произведение массы на скорость должно значительно превышать такую же величину на входе. Решению этой задачи служат все элементы конструкции ГТД.

Существуют три типа газотурбинных двигателей: турбореактивные, турбореактивные двухконтурные и турбовинтовые. Рассмотрим принцип работы каждого типа двигателя.

Сфера использования газотурбинных двигателей

На сегодняшний день существует несколько различных видов двигателей, которые отличаются друг от друга по принципу работы. Один из них — газотурбинный двигатель. Он создан таким образом, что, переняв все ключевые достоинства бензиновых и дизельных поршневых двигателей, получил ряд неоспоримых преимуществ.

Газотурбинный двигатель, принцип работы которого заключается в проведении топлива через ряд турбинных лопастей, приводит их в движение с помощью расширяющегося газа. Он относится к моделям внутреннего сгорания. Газотурбинные двигатели делятся на одно- и двухвальные. Их КПД прямо пропорционален температуре сгорания топлива. Самые элементарные модели — одновальные, имеющие единственную турбину. Двухвальные не только сложнее в устройстве, но и способны выдерживать большие нагрузки.

Как правило, газотурбинные двигатели используются в грузовых автомобилях, кораблях и локомотивах. Производятся опыты по разработке таких механизмов для легковых автомобилей.

В настоящее время существует большое количество моделей таких двигателей, многие из которых значительно превосходят своих предшественников большей производительностью, меньшими размерами, габаритами и весом. Также газотурбинный двигатель является более безопасным и нейтральным для окружающей среды. Он производит меньше шума и вибрации, а также расходует намного меньше топлива. Это основные преимущества, которыми обладает газотурбинный двигатель.

Именно газотурбинные механизмы подарили человечеству множество современных возможностей. Без них не существовали бы трансконтинентальные перекачки газа и перелеты больших авиалайнеров на большие расстояния. Газотурбинный двигатель способен вырабатывать огромное количество энергии с минимальными затратами топливных ресурсов. Он представляет собой самую сложную технологическую конструкцию среди всех, что были разработаны за прошедший век.

Итак, газотурбинный двигатель являет собой одно из самых грандиозных открытий двадцатого века, благодаря которому человечество получило колоссальные возможности для совершенствования технологий. Особенно ценным вкладом данной разработки становится то, что она позволяет экономить топливные ресурсы и практически не несет вреда окружающей среде, что крайне важно в наше время глобальных экологических кризисов.

Авиационные газотурбинные двигатели

Всем привет! В этой статье я хочу рассказать о том, как работают авиационные газотурбинные двигатели (ГТД). Я постараюсь сделать это наиболее простым и понятным языком.

Авиационные ГТД можно можно разделить на:

  • турбореактивные двигатели (ТРД)
  • двухконтурные турбореактивные двигатели (ТРДД)
  • Турбовинтовые двигатели (ТВД)
  • Турбовальные двигатели (ТВаД)

Притом, ТРД и ТРДД могут содержать в себе форсажную камеру, в таком случае они будут ТРДФ и ТРДДФ соответственно. В этой статье мы их рассматривать не будем.

Начнём с турбореактивных двигателей.

Турбореактивные двигатели

Такой тип двигателей был создан в первой половине 20-го века и начал находить себе массовое применение к концу Второй мировой войны. Первым в мире серийным турбореактивным самолетом был немецкий Me.262. ТРД были популярны вплоть до 60-ых годов, после чего их стали вытеснять ТРДД.


Современная фотография Me-262, сделанная в 2016 году

Самый простой турбореактивный двигатель включает в себя следующие элементы:

  • Входное устройство
  • Компрессор
  • Камеру сгорания
  • Турбину
  • Реактивное сопло (далее просто сопло)

Можно сказать, что это минимальный набор для нормальной работы двигателя.

А теперь рассмотрим что для чего нужно и зачем.

Входное устройство — это расширяющийся* канал, в котором происходит подвод воздуха к компрессору и его предварительное сжатие. В нём кинетическая энергия входящего воздуха частично преобразуется в давление.

*здесь и дальше мы будем говорить про дозвуковые скорости. На сверхзвуковой скорости физика меняется, и там все совсем не так.

Компрессор — это устройство, в котором происходит повышение давление воздуха. Компрессор можно характеризовать такой величиной, как степень повышения давления. В современных двигателях оно уже начинает переступать за 40 единиц. Кроме того, в нем увеличивается температура (может быть, где-то до 400 градусов Цельсия).

Камера сгорания — устройство, в котором к сжатому воздуху (после компрессора) подводится тепло из-за горения топлива. Температура в камере сгорания очень высокая, может достигать 2000 градусов Цельсия. Вам может показаться, что давление газа в камере тоже сильно увеличивается, но это не так. Теоретически принято считать, что подвод тепла осуществляется при постоянном давлении. В реальности оно немного падает из-за потерь (проблема несовершенства конструкции).

Турбина — устройство, превращающее часть энергии газа после камеры сгорания в энергию привода компрессора. Так как турбины используются не только в авиации, можно дать более общее определение: это устройство, преобразующее внутреннюю энергию рабочего тела (в нашем случае рабочее тело — это газ) в механическую работу на валу. Как вы могли понять, турбина и компрессор находятся на одном валу и жестко связаны между собой. Если в компрессоре происходит повышение давления газа, то в турбине, наоборот, понижение, то есть газ расширяется.

Сопло — суживающийся канал, в котором происходит преобразование потенциальной энергии газа в кинетическую (оставшийся запас энергии газа после турбины). Как и в турбине, в сопле происходит расширение газа. Образуется струя, которая, вытекая из сопла, движет самолёт.

С основными элементами разобрались. Но все равно не очень понятно как оно работает? Тогда давайте ещё раз и коротко.

Воздух из атмосферы попадает во входное устройство, где немного сжимается и поступает в компрессор. В компрессоре давление воздуха растёт ещё сильнее, растёт и температура. После компрессора воздух поступает в камеру сгорания и, смешиваясь там с топливом, воспламеняется, что приводит к сильному возрастанию температуры, при, можно сказать, постоянном давлении. После камеры сгорания горячий сжатый газ попадает в турбину. Часть энергии газа расходуется на вращение компрессора турбиной (чтобы он мог выполнять свою функцию, описанную выше), другая часть энергии расходуется на, нужное нам, движение самолёта, из-за того, что газ, пройдя турбину, превращается в реактивную струю в сопле и вырывается из него (сопла) в атмосферу. На этом цикл завершается. Конечно, в реальности все процессы цикла проходят непрерывно.

Такой цикл называется циклом Брайтона, или термодинамическим циклом с непрерывным характером рабочего процесса и подводом тепла при постоянном давлении. По такому циклу работают все ГТД.


Цикл Брайтона в P-V координатах

Н-В — процесс сжатия во входном устройстве
В-К — процесс сжатия в компрессоре
К-Г — изобарический подвод тепла
Г-Т — процесс расширения газа в турбине
Г-С — процесс расширения газа в сопле
С-Н — изобарический отвод тепла в атмосферу


Схематичная конструкция турбореактивного двигателя, где 0-0 — ось двигателя

ТРД может иметь и два вала. В таком случае компрессор состоит из компрессора низкого давления (КНД) и компрессора высокого давления (КВД), а подвод работы будут осуществлять турбина низкого давления (ТНД) и турбина высокого давления (ТВД) соответственно. Такая схема более выгодная газодинамически.


Реальный двигатель такого вида в разрезе

Мы рассмотрели принцип работы самой простой схемы авиационного газотурбинного двигателя. Естественно, на современных «Эйрбасах и Боингах» устанавливаются ТРДД, конструкция которых заметно сложнее, но работает все по таким же законам. Давайте рассмотрим их.

Двухконтурный турбореактивный двигатель

ТРДД, прежде всего, отличается от ТРД тем, что имеет два контура: внешний и внутренний. Внутренний контур содержит в себе то же самое, что и ТРД: компрессор (разделенный на КНД и КВД), камеру сгорания, турбину (разделенную на ТВД и ТНД) и сопло. Внешний контур представляет собой канал, с соплом в конце. В нем нет ни камеры сгорания, ни турбины. Перед обоими контурами (сразу после входного устройства двигателя) стоит ступень компрессора, работающая на оба контура.

Не очень понятная картина выходит, да? Давайте разберемся как оно работает.


Схематичная конструкция двухвального двухконтурного турбореактивного двигателя

Воздух, попадающий в двигатель, пройдя через первую ступень компрессора низкого давления, разбивается на два потока. Одна часть воздуха идет по внутреннему контуру, где происходят те же процессы, которые были описаны, когда мы разбирали ТРД. Вторая часть воздуха попадает во внешний контур, получив энергию от первой ступени КНД (та, которая работает на два контура). Во внешнем контуре энергия воздуха тратится только на преодоление гидравлических потерь (за счёт трения). В конце этот воздух попадает в сопло внешнего контура, создавая огромную тягу. Тяга, созданная внешним контуром, может составлять 80% тяги всего двигателя.

Одной из важнейших характеристик ТРДД является степень двухконтурности. Степень двухконтурности — это отношение расхода воздуха во внешнем контуре, к расходу воздуха во внутреннем контуре. Это число может быть как больше, так и меньше единицы. На современных двигателях это число переступает за значение в 12 единиц.
Двигатели, степень двухконтурности которых больше двух, принято называть турбовентиляторными, а первую ступень компрессора (ту, что работает на оба контура) вентилятором.


ТРДД самолета Boeing 757-200. На переднем плане видно входное устройство и вентилятор

На некоторых двигателях вентилятор приводится в движение отдельной турбиной, которая ставится ближе всего к соплу внутреннего контура. Тогда двигатель получается трехвальным. Например, по такой схеме выполнены двигатели Rolls Royce RB211 (устанавливались на L1011, B747, B757, B767), Д-18Т (Ан-124), Д-36 (Як-42)


Д-18Т в разрезе изнутри

Главное достоинство ТРДД заключается в возможности создания большой тяги и хорошей экономичности, по сравнению с ТРД.

На этом я хотел бы закончить про ТРДД и перейти к следующему виду двигателей — ТВД.

Турбовинтовые двигатели

Турбовинтовой двигатель, как и турбореактивный, относится к газотурбинным двигателям. И работает он почти как турбореактивный. Элементарный турбовинтовой двигатель состоит из уже знакомых нам элементов: компрессора, камеры сгорания, турбины и сопла. К ним добавляются редуктор и винт.

Принцип работы работы такой же, как у турбореактивного, с разницей в том, что практически вся энергия газа расходуется на турбине на вращение компрессора и на вращение винта через редуктор (здесь винт и редуктор находятся на одном валу с компрессором). Винт создаёт основную долю тяги. Оставшаяся, после турбины, часть энергии направляется в сопло, образуя реактивную тягу, но она мала, может составлять десятую часть от общей. Редуктор в этой схеме нужен для того, чтобы понизить обороты и передать момент, так как турбина может вращаться с очень высокой частотой, например, 10000 оборотов в минуту, а винту нужно только 1500. И винт достаточно тяжелый.


Схематичная конструкция ТВД

Но бывает и другая схема турбовинтовых двигателей: со свободной турбиной.
Её суть в том, что за обычной турбиной компрессора ставится отдельная турбина, которая механически не связана с турбиной компрессора. Такая турбина называется свободной. Связь между турбиной компрессора и свободной турбиной только газодинамическая. От свободной турбины идёт отдельный вал, на который устанавливаются редуктор с винтом. Все остальное работает так же, как и в первом случае. Большинство современных двигателей выполняют именно по такой схеме. Одним из плюсов такой схемы является возможность использования двигателя на земле, как вспомогательную силовую установку (ВСУ), не приводя винт в движение.


Схематичная конструкция ТВД со свободной турбиной

Хочу отметить, что не нужно смотреть на турбовинтовые двигатели как на малоэффективный пережиток прошлого. Я несколько раз слышал такие высказывания, но они неверны.
Турбовинтовой двигатель в некоторых случаях обладает наивысшим КПД, как правило, на самолетах с не очень большими скоростями (например, на 500 км/ч), притом, самолет может быть внушительных размеров. В таком случае, турбовинтовой двигатель может быть в разы выгоднее, рассмотренного ранее, турбореактивного двигателя.

На этом про турбовинтовые двигатели можно заканчивать. Мы потихоньку подошли к понятию турбовального двигателя.

Турбовальный двигатель

Должно быть, большинство читателей здесь вообще впервые слышат такое название. Такой тип двигателей устанавливается на вертолёты.

Турбовальный двигатель очень схож с турбовинтовым двигателем со свободной турбиной. Он также состоит из компрессора, камеры сгорания, турбины компрессора, далее идёт свободная турбина, связанная со всем предыдущем только газодинамически. А вот реактивную тягу такой двигатель не создаёт, реактивного сопла у него нет, только выхлоп. Свободная турбина имеет свой вал, который соединяется к главному редуктору вертолёта (несущего винта). Да, у всех известных мне вертолетов есть такой редуктор, и, как правило, он внушительных размеров. Дело в том, что обороты несущего винта вертолёта очень низкие. Если у самолета, как я писал выше, они могут достигать 1500 об/мин, то у вертолёта, например у Ми-8, всего 193 об/мин.
А обороты двигателя у вертолёта зачастую очень высокие (из-за небольших размеров), и понижать их приходится в сотню и более раз. Бывает такое, что редуктор стоит и на двигателе, и на самом вертолете, например, у Ми-2 и его двигателя ГТД-350.


Схематичная конструкция турбовального двигателя


Двигатель ТВ3-117 от вертолета Ми-8. Справа видны выхлопная труба и приводной вал

Итак, мы рассмотрели четыре типа газотурбинных двигателей. Надеюсь, мой текст был понятен и полезен для вас. Все вопросы и замечания можете писать в комментариях.

Как функционирует газотурбинный двигатель?

Газотурбинный двигатель — представляет собой тепловой силовой агрегат, который осуществляет свою работу по принципу реорганизации тепловой энергии в механическую.

Ниже подробно рассмотрим, как работает газотурбинный двигатель, а также его устройство, разновидности, преимущества и недостатки.

Отличительные черты газотурбинных двигателей

Сегодня наиболее широко подобный тип моторов используется в авиации. Увы, но из-за особенностей устройства они не могут применяться для обычных легковых автомобилей.

По сравнению с другими агрегатами внутреннего сгорания газотурбинный движок обладает наибольшей удельной мощностью, что является его основным плюсом. Помимо этого такой двигатель способен функционировать не только на бензине, но и на множества других видах жидкого горючего. Как правило, он работает на керосине либо на дизельном горючем.

Газотурбинный и поршневой двигатель, которые устанавливаются на «легковушках» за счет сжигания топлива изменяют химическую энергию горючего в тепловую, а затем и в механическую.

Но сам процесс у данных агрегатов немного различается. И в том и в другом движке сначала осуществляется забор (то есть воздушный поток поступает в мотор), затем происходит сжатие и впрыск горючего, после этого ТВС загорается, вследствие чего сильно расширяется и в результате выбрасывается в атмосферу.

Различие состоит в том, что в газотурбинных аппаратах все это проходит в одно время, но в различных частях агрегата. В поршневом же все осуществляется в одной точке, но по очередности.

Проходя через турбинный мотор, воздух сильно сжимается в объеме и благодаря этому увеличивает давление почти в сорок раз.

Единственное движение в турбине это вращательное, когда как в иных агрегатах внутреннего сгорания, помимо вращения коленвала также происходит движение поршня.

КПД и мощность газотурбинного двигателя выше чем у поршневого, несмотря на то, что вес и размеры меньше.

Для экономного потребления топлива газовая турбина оснащена теплообменником — диском из керамики, который функционирует от двигателя с небольшой частотой вращения.

Устройство и принцип работы агрегата

По своей конструкции движок не очень сложный, он представлен камерой сгорания, где оборудованы форсунки и свечи зажигания, которые необходимы для подачи горючего и добычи искрового заряда. Компрессор оснащен на валу вместе с колесом, обладающим особыми лопатками.

Помимо этого мотор состоит из таких составляющих как — редуктор, канал впуска, теплообменник, игла, диффузор и выпускной трубопровод.

Во время вращения компрессорного вала, воздушный поток, поступающий через канал впуска, захватывается его лопастями. После увеличения скорости компрессора до пятисот м в секунду, он нагнетается в диффузор. Скорость у воздуха на выходе диффузора снижается, но давление увеличивается. Затем воздушный поток оказывается в теплообменнике, где происходит его нагрев за счет отработанных газов, а после этого воздух подается в камеру сгорания.

Вместе с ним туда попадает горючее, которое распыляется через форсунок. После того как топливо перемешивается с воздухом, создается топливно-воздушная смесь, которая загорается благодаря искре получаемой от свечи зажигания. Давление в камере при этом начинает увеличиваться, а турбинное колесо приводится в действие за счет газов попадающих на лопатки колеса.

В итоге осуществляется передача крутящего момента колеса на трансмиссию авто, а отходящие газы выбрасываются в атмосферу.

Плюсы и минусы двигателя

Газовая турбина, как и паровая, развивает большие обороты, что позволяет ей набирать хорошую мощность, несмотря на свои компактные размеры.

Охлаждается турбина очень просто и эффективно, для этого не нужно каких-либо дополнительных приборов. У нее нет трущихся элементов, а подшипников совсем немного, за счет чего движок способен функционировать надежно и долгое время без поломок.

Главный минус подобных агрегатов в том, что стоимость материалов, из которых они изготавливаются довольно высокая. Цена на ремонт газотурбинных двигателей тоже немалая. Но, несмотря на это они постоянно совершенствуются и разрабатываются во многих странах мира, включая нашу.

Газовую турбину не устанавливают на легковые автомобили, прежде всего из-за постоянной нужды в ограничении температуры газов, которые поступают на турбинные лопатки. Вследствие этого понижается КПД аппарата и повышается потребление горючего.

Сегодня уже придуманы некоторые методы, которые позволяют повысить КПД турбинных двигателей, например, с помощью охлаждения лопаток или применения тепла выхлопных газов для обогрева воздушного потока, который поступает в камеру. Поэтому вполне возможно, что через некоторое время разработчики смогут создать экономичный двигатель своими руками для автомобиля.

Среди главных преимуществ агрегата можно также выделить:

  • Низкое содержание вредоносных веществ в выхлопных газах;
  • Простота в обслуживании (не нужно менять масло, а все детали обладают износостойкостью и долговечностью);
  • Нет вибраций, поскольку есть возможность запросто сбалансировать вращающейся элементы;
  • Низкий уровень шума во время работы;
  • Хорошая характеристика кривой крутящего момента;
  • Заводиться быстро и без затруднений, а отклик двигателя на газ не запаздывает;
  • Повышенная удельная мощность.

Виды газотурбинных двигателей

По своему строению данные агрегаты разделяются на четыре типа. Первый из них это турбореактивный, его в большинстве своем устанавливают на военные самолеты, обладающие высокой скоростью. Принцип работы заключается в том, что газы, выходящие на большой скорости из мотора, через сопло толкают самолет вперед.

Другой тип — турбиновинтовой. Его устройство от первого отличается тем, что он имеет еще одну секцию турбины. Данная турбина составлена из ряда лопаток, которые забирают остаток энергии у газов, прошедших через турбину компрессора и благодаря этому осуществляют вращение воздушного винта.

Винт может располагаться как в задней части агрегата, так и в передней. Отходящие газы выводятся через выхлопные трубы. Такой реактивный аппарат оснащается на самолетах, летающих на низкой скорости и на малой высоте.

Третий тип — турбовентиляторный, который похож по своей конструкции на предыдущий двигатель, но у него 2-я турбинная секция забирает энергию у газов не полностью и поэтому подобные движки также обладают выхлопными трубами.

Главная особенность такого двигателя в том, что его вентилятор, закрытый в кожух, работает от турбины низкого давления. Поэтому движок называют еще 2-х контурным, поскольку воздушный поток проходит через агрегат, являющейся внутренним контуром и через свой внешний контур, необходимый только лишь для направления потока воздуха, который толкает мотор вперед.

Самые новейшие самолеты оборудованы именно турбовентиляторными двигателями. Они эффективно функционируют на большой высоте, а также отличаются экономичностью.

Последний тип — турбовальный. Схема и устройство газотурбинного двигателя этого типа почти такая же, как и у прошлого движка, но от его вала, который присоединен к турбине, приводится в действие практически все. Чаще всего его устанавливают в вертолеты, и даже на современные танки.

Двухпоршневой и малоразмерный двигатель

Наиболее распространен двигатель с двумя валами, оборудованный теплообменником. В сравнении с агрегатами, у которых всего 1 вал, такие аппараты более эффективные и мощные. 2-х вальный двигатель оснащен турбинами, одна из которых предназначена для привода компрессора, а другая для привода осей.

Подобный агрегат обеспечивает машине хорошие динамические характеристики и сокращает кол-во скоростей в трансмиссии.

Также существуют малоразмерные газотурбинные двигатели. Они состоят из компрессора, газо-воздушного теплообменника, камеры сгорания и двух турбин, одна из которых находятся в одном корпусе со сборником газа.

Малоразмерные газотурбинные двигатели применяются в основном на самолетах и вертолетах, которые преодолевают большие расстояние, а также на беспилотных летательных устройств и ВСУ.

Агрегат со свободно поршневым генератором

На сегодняшний день аппараты этого типа являются наиболее перспективными для авто. Устройство движка представлено блоком, который соединяет поршневой компрессор и 2-х тактовый дизель. В середине находится цилиндр с наличием двух поршней объединенных друг с другом с помощью специального приспособления.

Работа движка начинается с того, что воздух сжимается во время схождения поршней и происходит возгорание горючего. Газы образуются за счет сгоревшей смеси, они способствуют расхождению поршней при повышенной температуре. Затем газы оказываются в газо-сборнике. За счет продувочных щелей в цилиндр попадает пережатый воздух, помогающий очистить агрегат от отработанных газов. Затем цикл начинается заново.

Двигатель для авиамоделей

Пилотирование самолетов стало увлечением, объединившим взрослых и детей со всего мира. Но с развитием данного развлечения развиваются и движители для мини самолетов. Самый многочисленный двигатель для самолетов такого типа является электрический. Но с недавних пор на арене двигателей для RC авиамоделей появились реактивные двигатели (РД).

Они постоянно дополняется всевозможными инновациями и придумками конструкторов. Задача перед ними стоит довольно сложная, но возможная. После создания одной из первых моделей уменьшенного двигателя, которая стала значимой для авиамоделирования, в 1990-х годах изменилось многое. Первый ТРД был 30 см в длину, около 10 см в диаметре и весом в 1,8 кг, но за десятки лет, у конструкторов получилось создать более компактную модель. Если основательно взяться за рассмотрение их строения, то можно поубавить сложностей и рассмотреть вариант создания собственного шедевра.

Устройство РД

Турбореактивные двигатели (ТРД) работают благодаря расширению нагретого газа. Это самые эффективные двигатели для авиации, даже мини работающие на углеродном топливе. С момента появления идеи создания самолета без пропеллера, идея турбины стала развиваться во всем обществе инженеров и конструкторов. ТРД состоит из следующих компонентов:

  • Вал;
  • Диффузор;
  • Колесо турбины;
  • Камера сгорания;
  • Компрессор;
  • Статор;
  • Конус сопла;
  • Направляющий аппарат;
  • Подшипники;
  • Сопло приема воздуха;
  • Топливная трубка и многое другое.

Принцип работы

В основе строения турбированного двигателя лежит вал, который крутится при помощи тяги компрессора и нагнетает быстрым вращением воздух, сжимая его и направляя из статора. Попав в более свободное пространство, воздух сразу же начинает расширяться, пытаясь обрести привычное давление, но в камере внутреннего сгорания он подогревается топливом, что заставляет его расшириться еще сильней.

Единственный путь для выхода воздух под давлением — выйти из крыльчатки. С огромной скоростью он стремится на свободу, направляясь в противоположную от компрессора сторону, к крыльчатке, которая раскручивается мощным потоком, и начинает быстро вращаться, придавая тяговой силы всему движку. Часть полученной энергии начинает вращать турбину, приводя в действие компрессор с большей силой, а остаточное давление освобождается через сопло двигателя мощным импульсом, направленным в хвостовую часть.

Чем больше воздуха нагревается и сжимается, тем сильней нагнетаемое давление, и температура внутри камер. Образовываемые выхлопные газы раскручивают крыльчатку, вращают вал и дают возможность компрессору постоянно получать свежие потоки воздуха.

Виды управления ТРД

Существует три вида управления двигателем:

Электронный блок управления ТРД jet GR180

Ручной. Самый простой из способов, который разгоняет двигатель электрическим статором до минимальных оборотов 3000 об/мин. При таких оборотах на свечу накала подается газ, и после воспламенения обороты увеличиваются вдвое. При стабильной тяге, подача газа отключается и начинается стабильная подача жидкого топлива. Недостаток управления в полном отсутствии информации о работе движка.

  • Автоматический. Запуск с тумблера на пульте управления. Стартер раскручивает вал до рабочих оборотов, пока электронный блок контролирует зажигание, старт и все остальные показатели. Для остужения движка при выключении блок прокручивает вал еще несколько раз.
  • Полуавтоматический. Система управления в полуавтоматическом режиме схожа с предыдущим видом. Она отличается только подачей газа с пульта управления. Все процессы, обороты и температуры электронный блок регулирует самостоятельно.
  • Виды двигателей для авиамоделей

    Реактивные двигатели на авиамодели бывают нескольких основных типов и двух классов: воздушно-реактивные и ракетные. Некоторые из них устарели, другие слишком затратные, но азартные любители управляемых авиамоделей пытаются опробовать новый двигатель в действии. Со средней скоростью полета в 100 км/час авиамодели становятся только интересней для зрителя и пилота. Популярнейшие типы двигателя отличаются для управляемых и стендовых моделей, в силу разного КПД, веса и тяги. Всего типов в авиамоделировании немного:

    • Ракетный;
    • Прямоточный воздушно-реактивный (ПРВД);
    • Пульсирующий воздушно-реактивный (ПуРВД);
    • Турбореактивный (ТРД);

    Ракетный используется только на стендовых моделях, и то довольно редко. Его принцип работы отличается от воздушно-реактивного. Основным параметром здесь выступает удельный импульс. Популярен из-за отсутствия необходимости взаимодействия с кислородом и возможности работы в невесомости.

    Прямоточный сжигает воздух из окружающей среды, который всасывается из входного диффузора в камеру сгорания. Воздухозаборник в этом случае направляет кислород в двигатель, который благодаря внутреннему строению заставляет нагнетать давление у свежего потока воздуха. Во время работы, воздух подходит к воздухозаборнику со скоростью полета, но во входном сопле она резко уменьшается в несколько раз. За счет замкнутого пространства нагнетается давление, которое при смешивании с топливом выплескивает из обратной стороны выхлоп с огромной скоростью.

    Пульсирующий работает идентично прямоточному, но в его случае сгорание топлива непостоянное, а периодичное. При помощи клапанов топливо подается только в необходимые моменты, когда в камере сгорания начинает падать давление. В своем большинстве реактивный пульсирующий двигатель совершает от 180 до 270 циклов впрыскивания топлива в секунду. Чтобы стабилизировать состояние давления (3,5 кГ/см2), используется принудительная подача воздуха с помощью насосов.

    Турбореактивный двигатель, устройство которого вы рассматривали выше, обладает самым скромным расходом топлива, за счет чего и ценятся. Единственным их минусов является низкое соотношение веса и тяги. Турбинные РД позволяют развить скорость модели до 350 км/ч, при этом холостой ход двигателя держится на уровне 35 000 оборотов в минуту.

    Технические характеристики

    Важным параметром, заставляющим авиамодели летать, является тяга. Она обеспечивает хорошую мощность, способную поднимать в воздух большие грузы. Тяга у старых и новых двигателей отличается, но у моделей, созданных по чертежам 1960-х годов, работающих на современном топливе, и модернизированных современными приспособлениями, КПД и мощность существенно возрастают.

    В зависимости от типа РД, характеристики, как и принцип работы, могут отличаться, но всем им для запуска необходимо создать оптимальные условия. Запускаются двигатели при помощи стартера — других двигателей, преимущественно электрических, которые прикрепляются к валу двигателя перед входных диффузором, либо запуск происходит раскручиванием вала с помощью сжатого воздуха, подаваемого на крыльчатку.

    На примере данных из технического паспорта серийного турбореактивного двигателя GR-180 можно увидеть фактические характеристики рабочей модели:
    Тяга: 180N при 120 000 об/мин, 10N при 25 000 об/мин
    Диапазон оборотов: 25 000 — 120 000 об/мин
    Температура выхлопного газа: до 750 C°
    Скорость истечения реактивной струи: 1658 км/ч
    Расход топлива: 585мл/мин (при нагрузке), 120мл/мин (холостой ход)
    Масса: 1.2кг
    Диаметр: 107мм
    длина: 240мм

    Использование

    Основной сферой применения была и остается авиационная направленность. Количество и размер разных типов ТРД для самолетов ошеломляет, но каждый из них особенный и применяется при необходимости. Даже в авиамоделях радиоуправляемых самолетов время от времени появляются новые турбореактивные системы, которые представляются на всеобщий обзор зрителям выставок и соревнований. Внимание к его использованию позволяет существенно развивать способности двигателей, дополняя принцип работы свежими идеями.
    В последнее десятилетие парашютисты и спортсмены экстремального вида спорта вингсьют, интегрируют мини ТРД как источник тяги для полета с применением костюм-крыло из ткани для вингсьюта, в этом случае двигатели крепятся к ногам, или жесткого крыла, надеваемого как рюкзак на спину, к которому и крепятся двигатели.
    Еще одним перспективным направлением использования являются боевые беспилотники для военных, на данный момент их активно используют в армии США.
    Самым перспективным направлением использования мини ТРД — беспилотники для транспортировки товаров между городами и по миру.

    Установка и подключение

    Установка реактивного двигателя и его подключение к системе — процесс сложный. В единую цепь необходимо подключить топливный насос, перепускные и регулировочные клапана, бак и температурные датчики. В силу воздействия высоких температур, обычно используются соединения и топливные трубки с огнеупорным покрытием. Закрепляется все самодельными фитингами, паяльником и уплотнениями. Так как трубка может быть по размеру с головку иголки, соединение должно быть плотным и изолированным. Неправильное подключение может привести к разрушению или взрыву двигателя. Принцип соединения цепи на стендовых и летающих моделях отличается и должен выполняться согласно рабочим чертежам.

    Преимущества и недостатки РД

    Преимуществ у всех типов реактивных двигателей множество. Каждый из типов турбин применяется для определенных целей, которым не страшны его особенности. В авиамоделировании использование реактивного двигателя открывает двери в преодоление высоких скоростей и возможности маневрирования независимо от многих внешних раздражителей. В отличие от электро- и ДВС реактивные модели более мощные и позволяют проводить самолету в воздухе больше времени.
    Выводы
    Реактивные двигатели для авиамоделей могут иметь различную тягу, массу, структуру и внешний вид. Для авиамоделизма они всегда останутся незаменимы из-за высокой производительности и возможности применять турбину с использование разного топлива и принципа работы. Выбирая определенные цели, конструктор может корректировать номинальную мощность, принцип образования тяги и т. д., применяя разные виды турбин к разным моделям. Работа двигателя на сгорании топлива и нагнетании давления кислорода делает его максимально эффективным и экономичным от 0,145 кГ/л до 0,67 кГ/л, чего всегда добивались авиаконструкторы.

    То сделать? Купить или сделать своими руками

    Данный вопрос не простой. Так как турбореактивные двигатели, будь они полномасштабными или уменьшенными моделями, но они технически сложные устройства. Сделать из — задача не из простых. С другой стороны мини ТРД производят исключительно в США или странах Европы, поэтому и цена у них в среднем 3000 долларов, плюс минус 100 баксов. Так что покупка готового турбореактивного двигателя вам обойдется с учетом пересылки и всех сопутствующих патрубков и систем 3500 долларов. Цену мощете сами посмотреть, достаточно загуглить «турбореактивный двигатель Р180-RX»

    Поэтому в современных реалиях лучше подойти к этому делу следующим образом — что называется сделать своими руками. Но это не совсем верная трактовка, скорее отдать работу подрядчикам. Двигатель состоит из механической и электронной части. Компоненты для электронной части движителя покупаем в Китае, механическую часть заказываем у местных токарей, но для этого необходимы чертежи или 3D модели и в принципе механическая часть у вас в кармане.

    Электронная часть

    Контроллер поддержания режимов двигателя можно собрать на Arduino. Для этого нужен прошитый Arduino чип, датчики — датчик оборотов и датчик температуры и исполнительные механизмы, регулируемая электроникой заслонка подачи топлива. Чип можно прошить самому, если знаете языки программирования, либо обратиться на форум для ардуинщиков за услугой.

    Механическая часть

    С механикой все интереснее все запчасти в теории вам могут изготовить токаря и фрезеровщики, проблема вся в том, что для этого нужно их специально искать. Не проблема найти токаря, который изготовит вал и втулку вала, а вот все остальное. Самая сложная деталь в изготовлении — это колесо центробежного компрессора. Оно изготовляется либо отливкой. либо на 5 координатном фрезерном станке. Самый простой способ заполучить крыльчатку центробежного насоса это ее купить, как зап часть для турбонагнетателя ДВС автомобиля. И уже под нее ориентировать все остальные детали.

    Мини газовая турбина своими руками

    В статье расскажем, как отремонтировать турбину своими руками и с какими сложностями. Согласен, но хочется что то сотворить http://songdoland.net/index.php?mid=board_vZbN12&document_srl=1383 своими руками, механическое, жужащее, пыхтящее, заводящее. Мне кажется при таком мини размере невозможно наладить стабильную работу турбины. 2 Газогенератор на дровах своими руками #2 Продолжительность 6 41 23 395 просмотров. Интересно почему в газотурбинных электростанциях выходит, в ВСУ на самолётахвертолётах выходит, а на ДВС особенно многолитровом не выйдет. Как именно в ремонте вы используете такую турбину. В сущности, паровые турбины являются составной частью сложной системы, призванной преобразовать. Колесо Пелтона применяется как движущая турбина, аккумулирующая потоки воды Сделай http://bbs.ncfdk.com/space-uid-141607.html?do=profile сам – своими руками сайт интересных самоделок, сделанных из подручных.

    Небольшой диаметр современных турбин и специальные сечения газовых каналов способствуют уменьшению инерционности, то есть турбина очень быстро разгоняется. Где надо работать, что бы сталкиваться с мини. На этот раз сделали турбину своими руками, смотрим. Турбореактивный двигатель http://espressobin.net/forums/users/pearleneaugustin/ своими руками Подробнее. В середине тридцатых годов http://forum.vtgaming.academy/index.php?p=/profile/TeddyLloyd одному умному английскому инженеру. Как сделать самодельную паровую турбину своими руками. Как соорудить минипаротурбину своими руками В Сети можно столкнуться с большим количеством вариантов, в которых. Цилиндрическая емкость к примеру, разобранный газовый баллон. Главное достоинство, ради которого https://www.atlantemonumentiadottati.com/elenco-delle-adesioni-scuolemonumenti/ автомобилисты решаются на подобный. Для этого, кроме самого чайника, потребуется.

    Сперва пар проходит через цилиндр высокого давления, раскручивает турбину, а заодно меняет свои параметры. Но соорудить своими руками миниГЭС для экономии электричества – вполне реально. Но мыто живем немного в другом веке сварочный инвертор не редкость, автомобильный хлам в избытке, простой газовый баллон держит поболе 2 атмосфер. В этой теме предлагаю обсуждать сборку МГЭС своими руками. Вот обычная турбина на выхлопных газах нормально нагнетает давление внутри воздухопровода, https://www.24propertyportugal.com/user/profile/353407 а основной ее секрет, она не выпускает воздух из себя, а только. Паровые турбины для электростанций традиционно имеют несколько цилиндров с лопатками, в которые подается пар высокого, среднего и низкого давления. Ремонт газовой горелки своими руками в домашних условиях. Говоря простыми словами, турбина представляет собой 2 улитки с крыльчатками, насаженными на общий. К 60м годам прошлого века газовые турбины практически полностью вытеснили поршневые.

    Самодельная паровая турбина своими руками принцип работы.

    Если немного забежать вперед по теме — то получается, что сейчас все турбированные двигатели используют механические. В данном видео мы будем разбирать тему паровых турбин и делать эксперимента. По установке турбины на не предназначенный для этого. Микротурбина заинтересовала автопроизводителей. Ну и собственно так и пришла https://docs.google.com/document/d/1RmqFihYAob_aWt0-K_6aO276yTa61apu_-vSUDtyTjA/mobilebasic идея создания первой турбины, монстра из бутылки. Отбалансировать турбину не возможно в сарае.

    Паровая турбина собственными руками – аппарат, который считается сердцем почти что любой электрические станции, действует. Бесплатное электричество Мини Гидроэлектростанция своими руками. С помощью такой можно продувать от загрязнений различные электронные устройства выходящий воздух не содержит конденсат. Как сделать Мини Нитро Метаноловый Генератор своими https://docs.google.com/document/d/1yz7EJNBfyrP94vh5G4ZSptbsBYLJitq_Hw8dO-PnEno/mobilebasic руками Продолжительность 3 51 595 040 просмотров. Существуют также колесатурбины со специальными https://docs.google.com/document/d/1zOCVe7sc7JlfTDsa5KwSH_hRKjAonuHDalySaUXePPs/mobilebasic лопатками, оптимизированными под струю жидкости. Подробные чертежи есть в свободном доступе и при должных знаниях https://docs.google.com/document/d/1sIpPF9yfIKoxhI_zhNtF92vecTkfk3ey1kFp4JXwVTE/mobilebasic можно сделать реактивную турбину своими руками взяв обычную турбину от автомобиля.

    Электрическая турбина является http://datascientist.su/300663/sovereign-person-state-which-independent-supreme-authority-vested-especially-monarchy-webster-revised-unabridged аналогом механической турбины. Вы знали, что если в согнутую дугой трубу положить сухого спирта, подуть воздухом из компрессора и подать газ из баллона, то она взбесится, будет орать громче взлетающего истребителя и краснеть от злости. Если подвести итог, получается – электро турбина на авто, это возможно, даже скажу больше ее можно сделать своими руками, однако не все так просто и часто игра. Как установить и отрегулировать регулятор тяги своими руками. После вышесказанного возникает вопрос а КАК бюджетно отремонтировать турбину, турбокомпрессор своими руками. Электрогенератор – гидротурбина из старой стиральной машины. В Сети можно столкнуться с большим количеством вариантов, в которых рассматривается самодельный способ изготовления данного агрегата.

    Турбореактивный двигатель своими руками Яндекс Дзен.

    Газовая электростанция небольшой мощности из https://docs.google.com/document/d/17RXyvPOnOSWQM9tNtyq_KVZCCgU3VPlgn4F-ASVHSQw/mobilebasic автомобильного турбокомпрессора как альтернатива двс реально. Паровая турбина своими руками – агрегат, который https://docs.google.com/document/d/1Zje7jETH7btDO9aynmTm_FAK9qpXlip2bFWvLKSYTWQ/mobilebasic является сердцем практически любой электростанции, работает по принципу. В данном видео мы будем разбирать тему паровых турбин и делать экспериментальную 5 ступенчатую паровую турбину своими руками. Микро ГЭС с турбиной Тюрго состоит из микро гидротурбины и генератора, установленных на одном валу. Небольшое описание турбины 100 Продолжительность 6 05 544 440 просмотров. В Сети можно столкнуться с большим количеством вариантов, в которых. Достали уже эти веерные отключения света под вечер, вот и чешутся руки делать что то механическое с генератором, хорошо хоть газ пока есть без счетчика, можно такую.

    Газовое оборудование на турбированный двигатель – можно. Электростанции Дерева И Паровой Котел Угле И Паровая Турбина — Котельная. При холостом ходе турбина выдавала около 8 Вольт что не очень то и подходило мне для основной идеи заряжать телефон из крана. Че то я не заметил турбину своими руками… вижу только гарретт на картинке. Демонстрация работы турбоэлектропарогенератора на дровах с паровым котлом из газового баллона и топкой. Вы узнаете возможных причинах неисправностей. Разумеется это будет миниустройство, и быстрее всего ваша рукодельная турбина будет газовая или воздушная, однако данная модель также. Устанавливают на автомобили с турбированным двигателем. Получаем электричество при помощи газового счётчика. Ремонт турбины своими руками, конструкция, причины поломки. И так, обычная турбина за счет газов раскручивается где то до 100120 тысяч оборотов.

    В Сети можно столкнуться с большим количеством https://docs.google.com/document/d/1sw_MERKhEgHsLwSa7X1o37nCW8WSxBxYbbPuTBewVyA/mobilebasic вариантов, в которых рассматривается самодельный способ изготовления. Что же это за чудоустройство, дающее экономию, которая в отдельных случаях достигает 50% от предыдущих показателей. Делаем самый простой паровой https://docs.google.com/document/d/1T-UCWA_PSFIawxBq4mVaXJqr_7Hex8HBZHV-eJJsipw/mobilebasic двигатель из мусора своими руками. Замена ремкомплекта турбины — турбокомпрессора своими. Мини конденсационная вакуумная перегретая паровая турбина своими руками, модель из двигателя. Для настройки электронных актуаторов можно сделать по аналогии или обратится. Для этого делим кружок из жести сперва на 4 части, потом каждую четвертинку на 2 части, и наконец каждую дольку на пополам. Подготовка к установке турбонаддува своими руками.

    Паровая турбина с генератором, дешево и сердито ЯПлакалъ.

    Конечно же это будет миниустройство, и скорее всего ваша самодельная турбина будет газовая или воздушная, но такая модель так же пригодится. Поскольку паровой двигатель и генераторная установка соединены в единый закрытый контур, то после прохождения турбины пар охлаждается, снова подается в котел, и весь процесс повторяется. Газовые микротурбины цена завод микротурбин в тутаеве вакансии запчасти для микротурбин. Ремонт турбины своими руками можно ли самостоятельно. Попробуем изготовить простейшую модель паровой турбины своими руками. Турботаймер — служит для продления срока службы турбины автомобиля. Виды миниГЭС, работающих от энергии водного потока. Если есть газ, ИМХО, проще на авторазборке взять дизель и переделать в дизельгенератор с газовым или газодизельным топливным циклом 8. В качестве генератора использовал моторчик от оргтехники, паровой котел. Взяв более менее большую турбину от авто можно собрать турбореактивный двигатель своими руками.

    Тысяча градусов под капотом: как появились и почему вымерли газотурбинные легковушки?

    Благодаря бесспорным успехам мощных газотурбинных силовых агрегатов они давным-давно вытеснили поршневые двигатели из многих смежных отраслей хозяйства и воздушного транспорта. Что же касается легковых автомобилей, то «газотурбинная эйфория», родившаяся вскоре после Второй мировой войны, через двадцать с небольшим лет тихо и навсегда скончалась, оставив истории лишь несколько единичных образцов столь необычной техники.

    Это незаметное для мировой автомобильной индустрии событие выглядело тем более странным, что создание самоходных повозок с газотурбинными устройствами началось ещё в конце XVII века, и в дальнейшем, вплоть до 1950-х годов, их неспешно доделывали, превратив в особые компактные «моторы» для транспортных нужд. Примером уникальной самодвижущейся древности с такого рода «двигателем» считается тележка с паровым котлом, которую в 1672 году изобрёл фламандский миссионер и учёный Фердинанд Вербист. Его идея заключалась в направлении струи горячего пара на горизонтальное колесо с лопатками, приводившее в движение два передних колеса.​

    Макет самоходной повозки Фердинанда Вербиста с древним прообразом газотурбинной установки

    Так что же это за уникально простой, компактный и мощный газотурбинный двигатель (ГТД) в одновальном исполнении для легковушек? В обобщенной конструктивной схеме он снабжался радиальным компрессором, засасывавшим воздух в камеры сгорания, куда впрыскивалось недорогое жидкое топливо. При воспламенении горючей смеси раскаленные газы раскручивали как компрессор-нагнетатель воздуха, так и тяговую турбину с шестеренчатым редуктором, понижавшим число оборотов до значения, приемлемого для привода колес автомобиля.

    Упрощенная схема автомобильного ГТД: 1 — компрессор, 2 — тяговая турбина, 3 — турбина компрессора

    Газотурбинные автомобили компании Rover

    Первый в мире газотурбинный автомобиль Rover Jet-1 удивлял всех прохожих в Лондоне. 1950 год

    Опробование второго более мощного турбоавтомобиля Rover Jet-1. 1952 год (фото R. Gerelli)

    Публичная демонстрация автомобиля Jet-1 сопровождалась шумной рекламной кампанией (фото R. Gerelli)

    Презентация Jet-1 состоялась в марте 1950 года. Через два года начались испытания модернизированного варианта с 230-сильной турбиной Т-8. Такой ГТД отличался плавностью работы, но слишком высокая рабочая температура потребовала применения редких и дорогих материалов, а расход авиационного керосина достигал 50 литров на 100 километров.

    Единственная сохранившаяся машина Rover Jet-1 образца 1950 года в лондонском Музее науки (фото автора)

    В 1956 году фирма Rover вернулась к ГТД второго поколения с новой 100-сильной турбиной 2S/100 и теплообменником производства компании British Leyland. Ее смонтировали в задней части полноприводного автомобиля Т-3 с двухместным стеклопластиковым кузовом на сварной раме с алюминиевыми усилителями и дисковыми тормозами. Максимальная скорость достигала 170 км/ч, расход топлива сократился до 22 литров, но в то время компания уже не могла выделить крупных средств на продолжение этих работ.

    Испытания уникального полноприводного концепт-кара Rover T-3 с задней установкой ГТД. 1956 год

    Газотурбинный автомобиль-купе T-3 в экспозиции Heritage Motor Centre в Гайдоне

    Несмотря на огромные расходы, в 1961-м появилась переднеприводная легковушка Т-4 с 140-сильным агрегатом 2S/140 переднего расположения и четырехместным несущим кузовом для будущей серийной модели Rover-2000. Она стала самой быстроходной дорожной машиной с ГТД (около 200 км/ч) и с места до «сотни» разгонялась за восемь секунд.

    Фото 1. Последняя газотурбинная машина компании Rover с кузовом, созданным для серийной модели Rover-2000

    Дополнением к серии Т-4 был удлиненный приземистый спортивный вариант Rover-BRM с задним приводом и двухместным кузовом купе, созданный совместно с фирмой BRM. До середины 1970-х он служил престижным и дорогим дорожным автомобилем и участвовал в крупных международных автогонках.

    Престижный дорожный вариант спортивного автомобиля Rover-BRM с газовой турбиной. 1965 год

    Газотурбинный уникум FIAT

    Спортивная газотурбинная машина FIAT Turbina в Museo dell’ Automobile di Torino. 1954 год

    Автомобиль FIAT Turbina с задним силовым агрегатом и автоматической трансмиссией модели 8001

    Главной особенностью 300-сильного ГТД заднего расположения была особая трансмиссия модели 8001, автоматически регулировавшая рабочие режимы компрессора и тяговой турбины. При этом свежий воздух засасывался спереди и подавался к заднему компрессору по центральному тоннелю.

    При желании на этой схеме можно разглядеть всю «механическую мельницу» машины FIAT Turbina

    Автомобиль получил стальную трубчатую раму и независимую подвеску всех колес со стабилизаторами поперечной устойчивости. После испытаний и демонстрации на Туринском автосалоне в нём выявили множество недостатков, и дальнейшие работы пришлось прекратить.

    «Огненные птицы» от корпорации General Motors

    Известный дизайнер Харли Эрл во главе своего «огненного семейства» уникальных автомобилей Firebird

    В декабре 1953 года с первой экспериментальной газотурбинной машиной Firebird XP-21 (Firebird I) сразу же произошел конфуз: ее приняли за поставленный на четыре больших колеса одноместный реактивный истребитель с короткими крылышками, хвостовым стабилизатором и задним соплом.

    Странное авиационно-автомобильное сочетание по-американски — концепт-кар Firebird XP-21. 1953 год

    Нелетающий истребитель GM Firebird XP-21 со спрятанным в корпусе ГТД и декоративным оперением

    Но, присмотревшись, под стеклопластиковым кузовом можно было увидеть 380-сильный ГТД GT-302 компании Allison, весивший около 350 кг и разгонявший бутафорский самолет до 370 км/ч. Он снабжался по-автомобильному независимой подвеской и внутренними тормозными барабанами.

    Необычный газотурбинный автомобиль-самолет Firebird I в экспозиции GM Heritage Center

    Через три года был представлен более строгий четырехместный вариант Firebird II (XP-43) с новым ГТД GT-304 в 200 сил при рабочем режиме 25 тысяч оборотов в минуту и дисковыми тормозами. На этот раз он был похож на гоночный автомобиль с передним остроконечным обтекателем и упрятанными в него фарами, небольшими боковыми крыльями, прозрачной крышей-фонарём и хвостовым оперением. В отличие от первенца его напичкали мелкими оригинальностями: двухсекционные двери, бортовой компьютер, блок автоматического переключения световых приборов.

    Второй газотурбинный вариант Firebird II, напоминавший рекордно-гоночный автомобиль. 1956 год

    Харли Эрл с удовольствием позирует у своего уникального газотурбинного детища GM Firebird II

    Вскоре за ним появилась третья приземистая шестиметровая «сказочная огненная птица» Firebird III (XP-73) с 225-сильным двигателем GT-305 и самолетным фонарём, ощетинившаяся всеми своими стеклопластиковыми кузовными панелями и ножевидными кромками дверей, крыльев и всевозможных хвостов. Для питания бортовых систем, кондиционера и круиз-контроля служил миниатюрный бензиновый движок в 10 сил.

    Третий газотурбинный уникум Firebird III с уймой полезных и бесполезных крыльев и крылышек. 1958 год

    Как создать азотную силовую установку

    К рассмотрению предлагается азотная силовая установка в сочетании с электромобилем. Автор рассчитывает, что этот вариант может быть использован в качестве альтернативы экологически небезопасным двигателям внутреннего сгорания.

    Проблемы экологии ДВС

    Двигатель внутреннего сгорания преобразует химическую энергию сгорающего топлива в механическую работу. Известными типами ДВС являются поршневой двигатель, роторно-поршневой двигатель, газотурбинный двигатель. Наибольшее распространение получили поршневые двигатели внутреннего сгорания, использующие в качестве источника энергии жидкое топливо (бензин, дизельное топливо) или природный газ.

    Для работы электродвигателя требуется электрическая энергия, источником которой могут быть аккумуляторные батареи или топливные элементы. Основным недостатком электромобилей, ограничивающим их широкое применение, является небольшая емкость источника электрической энергии и, соответственно, низкий запас хода. Гибридная силовая установка объединяет двигатель внутреннего сгорания и электродвигатель, связь которых осуществляется через генератор. Широкое распространение ДВС объясняется высокими энергетическими свойствами углеводородного топлива, благодаря чему автомобили с ДВС имеют большой запас хода на одной заправке топливного бака.

    До середины прошлого века все казалось прекрасно, пока автомобилей было сравнительно мало. Однако уже в 1950‑х годах жители американского штата Калифорния впервые начали ощущать оборотную сторону использования черного золота, когда от удушающего смога от выхлопных газов автомобилей стали задыхаться жители Лос-Анджелеса. В результате осознания приносимого вреда и многократного увеличения количества автомобилей в развитых странах было введено законодательство о требованиях к содержанию вредных выхлопов автомобилей. Вместе с тем, с 1970‑х годов стал ощущаться дефицит углеводородов из‑за сокращения их запасов и усложнения их добычи в новых труднодоступных районах. Несмотря на постоянное совершенствование ДВС и ужесточение требований к содержанию вредных выбросов, автотранспорт с ДВС и сегодня является главным загрязнителем атмосферы крупных городов. Назрела необходимость внедрения автотранспорта с малыми или нулевыми выбросами вредных веществ. Имеются в виду прежде всего электромобили, серийное производство и продажи которых организованы почти во всех развитых странах.

    Почему не распространены электромобили

    Следуя мировому тренду, в России тоже предполагаются такие работы. Да, в России много нефти, но стоимость бензина в последнее время растет, а крупные российские мегаполисы задыхаются в выхлопных газах. Поэтому сейчас так активно продвигаются проекты по использованию электромобилей для коммерческих и грузовых перевозок в крупных городах.

    Но и у электромобилей масса недостатков:

    • аккумуляторы за полтора века эволюции так и не достигли удовлетворительной плотности энергии;

    • проблемой является производство и утилизация аккумуляторов, которые часто содержат ядовитые компоненты (например, свинец или литий) и кислоты;

    • для массового применения электромобилей требуется создание соответствующей инфраструктуры для подзарядки аккумуляторов («автозарядные» станции);

    • длительное время зарядки аккумуляторов по сравнению с заправкой топливом;

    • малый пробег большинства электромобилей на одной зарядке (литиевая батарея емкостью 24 кВт-ч позволяет электромобилю проехать около 160 километров);

    • использование кондиционера, отопителя салона, загрузка электромобиля пассажирами или грузом, движение с частым разгоном / торможением и скоростью более 90‑100 км / ч уменьшают пробег до двух раз;

    • высокая стоимость литиевых батарей или высокий вес свинцовых батарей;

    • высокая стоимость батарей в свою очередь приводит к удорожанию электромобиля по отношению к схожему автомобилю с ДВС минимум в два раза;

    • деградация литиевых и других батарей с возрастом (в лучших моделях литиевых батарей через пять-восемь лет остается менее 80 процентов емкости).

    Ввиду перечисленных недостатков мировое производство электромобилей будет не столь массовым.

    Удел пневматики

    К числу транспортных средств с нулевой эмиссией относятся средства передвижения с пневмодвигателем. Впервые такие устройства появились еще в конце XIX века во французском городе Нант, где был запущен первый в мире трамвай, работающий на энергии сжатого воздуха. Позже аналогичное транспортное средство пытались сконструировать в середине 1930‑х годов в США. Принцип устройства силовой установки с пневмодвигателем был прост – струя сжатого воздуха попадала в импровизированную турбину, вал которой крепился к колесу и тем самым вращал его. Испытания показали, что энергия сжатого воздуха куда меньше, чем у сгораемого бензина, поэтому такие пневмодвигатели в то время не прижились. Позднее, в 1978 году австралийский автоконструктор Анджело Ди Пьетро создал принципиально новый пневмодвигатель. В нем было несколько камер для подачи сжатого воздуха, который выталкивали поршни. Те в свою очередь ритмично давили на ротор, вращающийся при помощи системы колесиков вокруг центрального вала. Данный двигатель оказался очень легким и компактным, что позволило установить его непосредственно на колеса автомобиля. А еще он позволял выдавать максимальный крутящий момент на любых оборотах, поэтому не нуждался в коробке передач.

    Чуть позже, в конце 1980‑х годов, в СССР был создан свой пневмо­двигатель, автором которого стал Николай Пустынский – главный конструктор Заволжского моторного завода. На 95 процентов он был аналогичен стандартному ДВС, только вместо топливовоздушной смеси в камеру сгорания (которая в этом случае по сути таковой не являлась) подавался сразу сжатый воздух под давлением 300 атмосфер, который и давил на поршни. Такой двигатель был очень дешев и практичен, но слабо подходил для крупных автомобилей, поэтому он нашел свое применение только в небольших пневмокарах, использующихся внутри предприятий.

    Криоальтернатива

    По мнению автора, более перспективны машины, работающие на жидком азоте. В 2005 году харьковские ученые презентовали одну из первых в мире таких машин. Новая модель, по словам ученых, должна стать прототипом отечественного городского криомобиля, используемого, в том числе, как маршрутное такси. Причем изготовить его технически гораздо проще, чем электромобиль или, скажем, водородный автомобиль.

    Если сложить три фактора – затраты энергии на производство жидкого азота, КПД в городском движении мегаполисов и энергоемкость, то по материальным затратам криомобиль ничуть не уступает традиционным автомобилям с ДВС.

    При этом стоит напомнить, что реальный КПД последних не превышает 0,1, или 10 процентов. Если учесть еще и затраты энергии на геологоразведку месторождений нефти, на добычу, ее переработку для получения бензина или дизельного топлива и транспортировку от месторождения, то окажется, что на полезную механическую работу используется, вероятно, не более 5 процентов теплотворной способности нефти. Остальные 95 процентов энергии углеводородов сжигаются не просто бесполезно, а превращаются в губительные для всего живого вредные вещества.

    Поэтому если принять во внимание экологическую и пожарную безопасность криомобилей, то экономический эффект от их массовой эксплуатации сразу же увеличивается. К тому же их производство будет стоить в полтора-два раза дешевле автомобилей с ДВС. Энергию для движения криомобили получают за счет так называемой «конверсии холода», запасенного в криогенных аккумуляторах. Такой аккумулятор представляет собой бак-криостат с жидким (при температуре около минус 196 °С) негорючим азотом.

    Достоинства азота

    Сжиженный азот получают на специальных воздухоразделительных установках из окружающей атмосферы. Азот не нужно разведывать, его содержание в приземном воздухе в любом месте составляет 78 процентов. Особенностью криогенных газов является их способность кипеть при температуре окружающей среды, то есть создавать пар, в том числе высокого давления. Пар подогревается в теплообменном устройстве за счет тепла окружающей среды и подается в пневматический двигатель. В этом азотная силовая установка принципиально отличается от автомобиля со сжатым воздухом. Сжатие воздуха производится вне автомобиля в компрессорах, обычно с приводом от электродвигателя, то есть с использованием внешнего источника электроэнергии, и таким образом сжатый воздух в баллоне пневмомобиля уже обладает энергией и готов к работе. Криомобиль больше похож на паровую машину, с той разницей, что для производства пара крио­мобилю не требуется топлива. Так же­, как на паровозе, азот получает энергию только на криомобиле, и для его испарения и нагрева требуется значительное время. Паровозу тоже, прежде чем начать движение, требуется несколько часов, чтобы получить водяной пар и постоянно подавать топливо в топку котла, даже во время длительной стоянки. Именно по этой причине паровозы стали заменять на ДВС, которым для начала работы достаточно нескольких минут.

    Вероятно, поэтому криомобили пока не находят применения, хотя у них много преимуществ. В жидком состоянии азот может храниться при нормальном атмосферном давлении, не требует применения тяжелых баллонов высокого давления и занимает достаточно малый удельный объем. Расчеты показывают, что при изотермическом рабочем цикле может быть получена механическая работа до 0,4 МДж на каждый килограмм жидкого азота (или около 110 Вт-ч на килограмм). Эта величина в несколько раз больше, чем у современных электрохимических аккумуляторов.

    Стоит учесть, что, помимо всего прочего, криоавтомобиль является пожаробезопасным видом транспорта, а это может обусловить, кроме обычных, ряд его специфических применений – в шахтах, на пожароопасных предприятиях, в нефтегазовой и оборонной промышленности. Уже созданы пожарные машины с жидким азотом, которые незаменимы при тушении пожаров в местах, где отсутствует вода. Согласно американским данным, на производство 1 килограмма жидкого азота необходимо 0,44 кВт-ч электроэнергии, а на 1 килограмм бензина – 5 кВт-ч. Кроме того, такой транспорт может решить проблему ограниченности ресурсов углеводородного топлива и снизить зависимость большинства стран от поставщиков и производителей нефти и газа.

    Гибридная установка

    Автор предлагает еще одну комбинацию гибридной азотной силовой установки в сочетании с электромобилем, которую можно собрать «своими руками».

    Первым ее элементом является криоемкость с жидким азотом, в качестве которых предлагаются, например, вертикальные сосуды Дьюара. Сосуд должен быть заполнен примерно на две трети, чтобы в верхней части азот был в газо­образном состоянии, при этом его температура будет равна температуре кипения. Из сосуда газообразный азот под собственным давлением подается через вентиль стравливания в радиаторы. Радиаторы обычные отопительные алюминиевые. Количество секций следует определять опытным путем в зависимости от емкости сосуда Дьюара с таким расчетом, чтобы на выходе из радиатора температура азота была близкой к температуре окружающей среды.

    Радиаторы следует покрасить в черный цвет и установить их на крыше автомобиля, чтобы они нагревались как можно сильнее. Поскольку температура азота в радиаторах отрицательная, то они будут покрываться инеем, который периодически следует оттаивать, при плюсовой температуре окружающего воздуха – перекрыв на время вентиль стравливания, а при отрицательной – обдувом теплым воздухом. Радиаторы должны устанавливаться на поддоны для сбора воды, образующейся при оттаивании инея. Эту воду после очистки можно использовать как питьевую и в других целях.

    Из радиатора нагретый азот подается в детандер, в качестве которого можно использовать пневматический гайковерт. Гайковерт-детандер должен иметь отвод выходящего из него азота, охладившегося после совершения механической работы. Далее азот поступает в холодильник, температура в котором регулируется специальным вентилем, и в кондиционер с регулировочным вентилем.

    Давление в сосуде Дьюара регулируется вентилем выпуска азота в атмосферу и контролируется по манометру. На шпиндель гайковерта устанавливается шкив ременной передачи, которая передает крутящий момент на обычный автомобильный генератор, соединенный электрокабелем с автомобильными аккумуляторами. Через муфту сцепления момент может одновременно передаваться на ведущие колеса автомобиля. Диаметры шкивов подбираются опытным путем, так чтобы генератор обеспечивал зарядку аккумуляторов.

    Аккумуляторы соединены кабелем с мотор-генератором, который постоянно механически связан с ведущими колесами. Благодаря мотор-генератору обеспечивается возврат кинетической энергии автомобиля в аккумуляторы при его торможении. Это повышает эффективность торможения и позволяет уменьшить износ механических тормозов.

    Теплый азот из радиаторов подается, кроме того, через вентиль заливки в нижнюю часть сосуда Дьюара с помощью компрессора низкого давления с электродвигателем, питающимся от аккумуляторов через кабель. Теплый азот, проходя через слой жидкого азота, будет способствовать его интенсивному кипению и частично восполнять убыль газообразного азота из сосуда.

    Несмотря на интенсивное кипение жидкого и увеличившийся расход газообразного азота через вентиль и радиаторы, итоговый расход газа из сосуда должен сократиться. Таким образом, как бы увеличивается емкость сосуда и реально увеличивается запас хода гибридного криомобиля.

    В качестве компрессора низкого давления можно использовать автомобильный пылесос. Этот компактный автопылесос не только быстро очистит салон вашего автомобиля от скопившейся в нем пыли, но и составит отменную конкуренцию привычным компрессорам, которые способны выполнять лишь одну функцию.

    Для сравнения

    Теперь сравним энергоемкость батареи продающегося в России электромобиля Mitsubishi i-MiEV с энергоемкостью жидкого азота. Современный литиево-ионный аккумулятор имеет удельную энергоемкость 110‑150 Вт-ч / кг, а жидкий азот, как указывалось выше, 110 кВт-ч на килограмм, то есть в среднем практически одинаковую. Mitsubishi i-MiEV имеет литиевую батарею емкостью около 16 кВт-ч и весом около 150 килограммов, которая обеспечивает ему запас хода порядка 100 километров.

    При создании гибрида электромобиля с азотной силовой установкой вес и энергоемкость аккумулятора целесообразно уменьшить в четыре-пять раз, установив взамен емкость Дьюара объемом 200‑250 литров и обеспечив, таким образом, равноценную энергетику гибрида.

    Такой гибрид будет при этом дешевле. Для его эксплуатации не потребуются электрозарядные станции, так как подзарядка аккумуляторов меньшей емкости будет осуществляться за счет криоэнергии жидкого азота.

    Что касается заправки жидким азотом, то владельцы автозаправок могут оборудовать на бензозаправке установку для сжижения азота и оснащать им криоавтомобили так же быстро, как и бензиновые автомобили, в отличие от продолжительной зарядки аккумуляторов.

    Представленную автором схему азотной силовой установки следует рассматривать как экспериментально-лабораторную. В случае подтверждения изложенных замыслов она может применяться на любых наземных и водных транспортных средствах, разработанных и изготовленных с применением специальных комплектующих и промышленных технологий.

    «> Как создать азотную силовую установку Код PHP » data-description=»К рассмотрению предлагается азотная силовая установка в сочетании с электромобилем. Автор рассчитывает, что этот вариант может быть использован в качестве альтернативы экологически небезопасным двигателям внутреннего сгорания.

    Что такое газотурбинный двигатель?

    На сегодняшний день существует несколько различных видов двигателей, которые отличаются друг от друга по принципу работы. Один из них — газотурбинный двигатель. Он создан таким образом, что, переняв все ключевые достоинства бензиновых и дизельных поршневых двигателей, получил ряд неоспоримых преимуществ.

    Газотурбинный двигатель, принцип работы которого заключается в проведении топлива через ряд турбинных лопастей, приводит их в движение с помощью расширяющегося газа. Он относится к моделям внутреннего сгорания. Газотурбинные двигатели делятся на одно- и двухвальные. Их КПД прямо пропорционален температуре сгорания топлива. Самые элементарные модели — одновальные, имеющие единственную турбину. Двухвальные не только сложнее в устройстве, но и способны выдерживать большие нагрузки.

    Как правило, газотурбинные двигатели используются в грузовых автомобилях, кораблях и локомотивах. Производятся опыты по разработке таких механизмов для легковых автомобилей.

    В настоящее время существует большое количество моделей таких двигателей, многие из которых значительно превосходят своих предшественников большей производительностью, меньшими размерами, габаритами и весом. Также газотурбинный двигатель является более безопасным и нейтральным для окружающей среды. Он производит меньше шума и вибрации, а также расходует намного меньше топлива. Это основные преимущества, которыми обладает газотурбинный двигатель.

    Своими руками первый такой механизм создал норвежский ученый Эгидиус Эллинг в 1903 году. С тех пор его доработкой никто не занимался до самого 1920 года, когда по завершении Первой мировой войны доктор А. Гриффит начал вносить свои изменения в его конструкцию. А после окончания Второй мировой войны реактивные двигатели вошли в массовое производство в качестве наиболее эффективного метода питания самолета.

    В настоящее время газотурбинный двигатель продолжает активно совершенствоваться. Наиболее широко он применяется в турбинах самолета, приводя в движение его лопасти, и в военной технике.

    Именно газотурбинные механизмы подарили человечеству множество современных возможностей. Без них не существовали бы трансконтинентальные перекачки газа и перелеты больших авиалайнеров на большие расстояния. Газотурбинный двигатель способен вырабатывать огромное количество энергии с минимальными затратами топливных ресурсов. Он представляет собой самую сложную технологическую конструкцию среди всех, что были разработаны за прошедший век.

    Итак, газотурбинный двигатель являет собой одно из самых грандиозных открытий двадцатого века, благодаря которому человечество получило колоссальные возможности для совершенствования технологий. Особенно ценным вкладом данной разработки становится то, что она позволяет экономить топливные ресурсы и практически не несет вреда окружающей среде, что крайне важно в наше время глобальных экологических кризисов.

    Где взять достойные двигатели для малой авиации

    Виталий Селиванов,
    заслуженный летчик-испытатель РФ
    Паровоз не может быть красивее своего котла» – так в начале века говорили инженеры-паровозостроители. На заре авиации из-за отсутствия легкого двигателя летать начинали на планерах с гор, используя потоки обтекания. Только создание легкого, работающего на бензине, двигателя внутреннего сгорания, наконец, дало старт аппаратам тяжелее воздуха. Бензиновый двигатель (с запасом топлива) был в десять раз легче, чем такой же по мощности двигатель электрический с аккумулятором или паровой с водой и топливом. Братья Райт, французы, немцы, а за ними и в России, кстати, только летом 1910 года, сто лет назад взлетело три аппарата: А.С. Кудашева, Я.М. Гаккеля и И.И. Сикорского. Правда, на всех аппаратах были импортные бензиновые двигатели «Анзани» 25 и 35 л.с.

    Грех не вспомнить наших великих предков, но, к несчастью, у нас и сейчас с двигателями для небольших самолетов почти те же проблемы. В наследие от СССР нам достался всего один серийный поршневой двигатель М-14. Двигатель простой, надежный, неприхотливый к топливу и маслу. Не боится морозов. Сравнительно недорогой, если летать на нем не очень много. За это и любят двигатель М-14.

    На чем же летают сейчас, в «малой авиации», т.е. сверхлегкие и легкие летательные аппараты? Наиболее распространены, известны и почти везде в мире обслуживаются двигатели австрийской фирмы Rotax 912 и 914. Мощностью 80–100 л.с. , они устанавливаются на аппараты взлетной массой до полутонны, с экипажем до двух человек. Это учебные и туристские, любительские аппараты.

    Как только потребуется выполнять фигуры сложного пилотажа вдвоем (с инструктором), потребуется более прочный и тяжелый самолет взлетной массой 800–1000 кг (например, По-2, Як-18, Як-52). При этом с двигателем в 100–160 л.с. половину летного времени придется затрачивать на набор потерянной за пилотаж высоты с вертикальной скоростью 2–3 м/сек. А если захочется набирать высоту побыстрей, то и двигатель подойдет как раз М14. На нем можно получить в наборе до 10 м/сек, да и потеря высоты за пилотаж будет гораздо меньше. Конкурентами М14 выступают американские Lycoming и Teledyne Continental, чешские Walter, немецкие Centurion. Lycoming и Teledyne Continental капризны при запуске на земле даже летом, то им жарко – то холодно, зимой в воздухе вообще не запустить. Они употребляют только «свои», дорогие, импортные бензин и смазку, но все их минусы перевешиваются двумя плюсами:
    1. Работают на «максимале» без ограничения по времени.
    2. Расход топлива в 2 раза меньше, чем у нашего М14.

    Если свести основные технические и экономические показатели двигателей в одну таблицу с задачей получения стоимости затрат на работу двигателя с налетом самолета до полного использования ресурса – 10 тыс. летных часов – получим таблицу.

    Из нее видно, что за 10 000 часов налета на нашем М-14 придется заплатить на 30% больше чем на ТВД Alison и почти в три раза больше против дизеля Centurion. А вот двигатель М601, хотя и стоит почти в три раза дороже, чем М-14, но каждая его лошадиная сила обходится эксплуатанту в три раза дешевле, чем у М-14. Поэтому если мы хотим получить самолет для основного обучения по курсу военного летного училища, где вынуждены работать интенсивно и обеспечивать очень большой налет, то самолет, конечно, нужно иметь с ТВД, и пока лучше М601 серийного двигателя не видно!

    Самолет нужен, конечно, пилотажный, с эксплуатационной перегрузкой до 7, достаточно высотный (7–10 км), следовательно, с герметичной кабиной. Наиболее подходящий из имеющихся и обслуживаемых в России двигателей для планируемого самолета – это чешский Walter М601. Его аналоги Pratt&Whittney поновей, поэкономичней, но системы их технического обслуживания и опыта эксплуатации в России нет. Дизельный двигатель на пилотажный самолет с временем полета 0,5–1,5 часа пока ставить рано – тяжел ( в Интернете у танкистов есть очень дельный сравнительный анализ преимуществ и недостатков газотурбинного и дизельного двигателей).

    Пока получается, что самое дешевое летное обучение – на планере при запуске с лебедки. За 3 евро (120) рублей вас на планере забросят на высоту 500 м, откуда вы будете спокойно снижаться примерно 8–10 минут или можете уйти на свободное парение. За планерами следуют ультралайты с взлетным весом до 500 кг и двигателями Rotax 912 и 914, мощностью 80–100 л.с. На них можно проводить обучение полетам по кругу, простому пилотажу, полетам по маршруту. Это даст налет 30–40 часов и выход на уровень пилота-любителя. Заниматься таким обучением могут частные летные школы или ДОСААФ. Справка: уже проектируются сверхлегкие летательные аппараты, на которых будут использоваться электродвигатели с аккумулятором до 30 минут полета. И дешево, и экологически чисто, малошумно и безопасно.

    Следующий этап: пилотажный учебный поршневой самолет. Одним из предпочтительных вариантов мог быть яковлевский самолет «Кадет». На нем можно учить сложному и высшему пилотажу, полетам строем и ночью. Но заставить военных пересесть снова на поршневой самолет будет очень трудно, полеты физически тяжелы, а оплата и льготы будут занижены. Поэтому такие машины, скорее всего, пригодятся ДОСААФ и частным летным школам. Двигатель все же придется менять – слишком дорог в эксплуатации – на 30% дороже, чем вдвое более мощный ТВД М601.

    Если за единицу стоимости летного часа принять стоимость полета на самолете УТС с ТВД с максимальной скоростью около 500 км/ч, то, в зависимости от максимальной скорости самолета, можно получить соотношение цен летного часа на различных самолетах.

    На графике четко видно, что до максимальной скорости 500 км/ч, цена самолета увеличивается плавно линейно, со скорости от 500 до 800 км/ч растет по параболе и далее почти линейно уходит вверх. Отсюда вывод: нет смысла увеличивать максимальную скорость УТС с ТВД более 500–600 км/ч, так как небольшое увеличение скорости обходится слишком дорого и в цене самолета, и в эксплуатации. Видимо, по этим причинам уменьшили мощность двигателей заказчики самолета Pilatus РС-7МК из ЮАР.

    Если УТС с ТВД будет иметь скорость захода на посадку менее 150 км/ч, то необходимость в поршневом самолете первоначального обучения для военного училища может отпасть, и эта задача может быть решена на УТС с ТВД с меньшими затратами.

    Для основной подготовки в летном училище, конечно, как и во всем мире, остро необходим УТС с ТВД («Авиапанорама» №№ 1 и 2, 2010).

    Мы видим, как с помощью государства поддерживается авиапромышленность Китая, Индии, Бразилии и других развивающихся стран. Даже Турция планирует выпустить в 2011 году свой УТС с ТВД. Наш крупный бизнес – в основной массе технически малограмотный – покупает в первую очередь недвижимость и предметы роскоши. Кстати, и до революции наши финансисты не очень-то жертвовали на технический прогресс. Ведь не у нас, а на западе были установлены крупные призы за перелет через Ламанш и за другие рекордные полеты.

    С отменой запретительной системы использования воздушного пространства, обещанного в 2008 году, теперь в конце 2010 года, вероятно, все же откроется большой российский рынок для небольших частных самолетов. Эту ситуацию государство могло бы использовать для развития собственного производства легких летательных аппаратов. Можно, как Китай и Индия, покупать партии лучших зарубежных самолетов, с правом их последующего производства. Но гораздо важнее для нас, авиационной промышленности и любителей авиации, это покупка и лицензионное производство лучших, самых распространенных и надежных двигателей Rotax, Teledyne Continental, Pratt&Whittney со шкалой мощности не производимых в России до сего времени. Имея широкий спектр выбора двигателей, наша авиационная промышленность смогла бы обеспечить российский рынок нужными самолетами. Исторические примеры только подтверждают это. Так было с Ли-2, так было с покупкой английских реактивных двигателей «Нин-1» и «Дервент-V», в результате получили самый массовый истребитель мира МиГ-15 и почти такой же массовый фронтовой бомбардировщик Ил-28.

    На что хотелось бы обратить особое внимание. Наша национальная привычка к нищете породила массовую тенденцию: сделаем, что получится, а потом в серии доведем. Нужно помнить, чему учат студентов авиационных ВУЗов: доработка эскиза обойдется в цену резинки и карандаша (копейки), макета – в цену затраченного пиломатериала (тысячи рублей), опытного образца самолета – в миллионы рублей, а доработки серийного самолета потребуют очень больших денег, что может привести к краху всей программы вообще. Для исключения таких промахов нужно любить заказчика и делать все своевременно, чтобы наше изделие было лучше, чем у конкурентов.

    0 0 голоса
    Рейтинг статьи
    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector